Upload folder using huggingface_hub
Browse files- Tokenizer/BPE/special_tokens_map.json +53 -0
- Tokenizer/BPE/spm.model +3 -0
- Tokenizer/BPE/spm.vocab +0 -0
- Tokenizer/BPE/test_tokenizer.py +51 -0
- Tokenizer/BPE/tokenizer.json +0 -0
- Tokenizer/BPE/tokenizer.model +3 -0
- Tokenizer/BPE/tokenizer_config.json +80 -0
- Tokenizer/README.md +160 -0
- Tokenizer/Unigram/special_tokens_map.json +53 -0
- Tokenizer/Unigram/spm.model +3 -0
- Tokenizer/Unigram/spm.vocab +0 -0
- Tokenizer/Unigram/test_tokenizer.py +51 -0
- Tokenizer/Unigram/tokenizer.json +0 -0
- Tokenizer/Unigram/tokenizer.model +3 -0
- Tokenizer/Unigram/tokenizer_config.json +80 -0
- Tokenizer/convert_to_hf.py +18 -0
- Tokenizer/test_tokenizer.py +9 -0
- Tokenizer/train_spm_bpe.py +18 -0
- Tokenizer/train_spm_unigram.py +17 -0
Tokenizer/BPE/special_tokens_map.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<user>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"content": "<assistant>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"content": "<system>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"bos_token": {
|
| 26 |
+
"content": "<s>",
|
| 27 |
+
"lstrip": false,
|
| 28 |
+
"normalized": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"single_word": false
|
| 31 |
+
},
|
| 32 |
+
"eos_token": {
|
| 33 |
+
"content": "</s>",
|
| 34 |
+
"lstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"rstrip": false,
|
| 37 |
+
"single_word": false
|
| 38 |
+
},
|
| 39 |
+
"pad_token": {
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": false,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"unk_token": {
|
| 47 |
+
"content": "<unk>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false
|
| 52 |
+
}
|
| 53 |
+
}
|
Tokenizer/BPE/spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:debb3ad91c0745bb304129ee9a0332a33c2bb1fffe7313d573608e5014ab69bb
|
| 3 |
+
size 747364
|
Tokenizer/BPE/spm.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Tokenizer/BPE/test_tokenizer.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
tok = AutoTokenizer.from_pretrained("./Tokenizer/BPE")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
text1 = "Hello world! <user> write code </s>"
|
| 6 |
+
text2 = "myHTTPRequestHandler is calling process_payment_v2"
|
| 7 |
+
text3 = "methylphenidate hydrochloride dopamine reuptake modulation"
|
| 8 |
+
text4 = "hello 🔥🔥🔥💀💀"
|
| 9 |
+
text5 = "https://github.com/Avinash-MiniLLM?tab=repos"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
print(text1)
|
| 13 |
+
print(text2)
|
| 14 |
+
print(text3)
|
| 15 |
+
print(text4)
|
| 16 |
+
print(text5)
|
| 17 |
+
|
| 18 |
+
print(tok.tokenize(text1))
|
| 19 |
+
print(tok.tokenize(text2))
|
| 20 |
+
print(tok.tokenize(text3))
|
| 21 |
+
print(tok.tokenize(text4))
|
| 22 |
+
print(tok.tokenize(text5))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
ids1 = tok.encode(text1)
|
| 26 |
+
ids2 = tok.encode(text2)
|
| 27 |
+
ids3 = tok.encode(text3)
|
| 28 |
+
ids4 = tok.encode(text4)
|
| 29 |
+
ids5 = tok.encode(text5)
|
| 30 |
+
|
| 31 |
+
print(ids1)
|
| 32 |
+
print(tok.decode(ids1))
|
| 33 |
+
print(tok.decode(ids1, skip_special_tokens=True))
|
| 34 |
+
|
| 35 |
+
print(ids2)
|
| 36 |
+
print(tok.decode(ids2))
|
| 37 |
+
print(tok.decode(ids2, skip_special_tokens=True))
|
| 38 |
+
|
| 39 |
+
print(ids3)
|
| 40 |
+
print(tok.decode(ids3))
|
| 41 |
+
print(tok.decode(ids3, skip_special_tokens=True))
|
| 42 |
+
|
| 43 |
+
ids4 = tok.encode(text4)
|
| 44 |
+
print(ids4)
|
| 45 |
+
print(tok.decode(ids4))
|
| 46 |
+
print(tok.decode(ids4, skip_special_tokens=True))
|
| 47 |
+
|
| 48 |
+
ids5 = tok.encode(text5)
|
| 49 |
+
print(ids5)
|
| 50 |
+
print(tok.decode(ids5))
|
| 51 |
+
print(tok.decode(ids5, skip_special_tokens=True))
|
Tokenizer/BPE/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Tokenizer/BPE/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:debb3ad91c0745bb304129ee9a0332a33c2bb1fffe7313d573608e5014ab69bb
|
| 3 |
+
size 747364
|
Tokenizer/BPE/tokenizer_config.json
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"3": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"4": {
|
| 39 |
+
"content": "<user>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"5": {
|
| 47 |
+
"content": "<assistant>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"6": {
|
| 55 |
+
"content": "<system>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
}
|
| 62 |
+
},
|
| 63 |
+
"additional_special_tokens": [
|
| 64 |
+
"<user>",
|
| 65 |
+
"<assistant>",
|
| 66 |
+
"<system>"
|
| 67 |
+
],
|
| 68 |
+
"bos_token": "<s>",
|
| 69 |
+
"clean_up_tokenization_spaces": false,
|
| 70 |
+
"eos_token": "</s>",
|
| 71 |
+
"extra_special_tokens": {},
|
| 72 |
+
"legacy": true,
|
| 73 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 74 |
+
"pad_token": "<pad>",
|
| 75 |
+
"sp_model_kwargs": {},
|
| 76 |
+
"spaces_between_special_tokens": false,
|
| 77 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 78 |
+
"unk_token": "<unk>",
|
| 79 |
+
"use_default_system_prompt": false
|
| 80 |
+
}
|
Tokenizer/README.md
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Tokenizer Module
|
| 2 |
+
|
| 3 |
+
This module handles all tokenization tasks for the Mini-LLM project, converting raw text into numerical tokens that the model can process.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
The tokenizer uses **SentencePiece** with **Byte Pair Encoding (BPE)** to create a 32,000 token vocabulary. BPE is the same algorithm used by GPT-3, GPT-4, and LLaMA models.
|
| 8 |
+
|
| 9 |
+
## Directory Structure
|
| 10 |
+
|
| 11 |
+
```
|
| 12 |
+
Tokenizer/
|
| 13 |
+
├── BPE/ # BPE tokenizer artifacts
|
| 14 |
+
│ ├── spm.model # Trained SentencePiece model
|
| 15 |
+
│ ├── spm.vocab # Vocabulary file
|
| 16 |
+
│ ├── tokenizer.json # HuggingFace format
|
| 17 |
+
│ ├── tokenizer_config.json
|
| 18 |
+
│ └── special_tokens_map.json
|
| 19 |
+
├── Unigram/ # Unigram tokenizer (baseline)
|
| 20 |
+
│ └── ...
|
| 21 |
+
├── train_spm_bpe.py # Train BPE tokenizer
|
| 22 |
+
├── train_spm_unigram.py # Train Unigram tokenizer
|
| 23 |
+
└── convert_to_hf.py # Convert to HuggingFace format
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
## How It Works
|
| 27 |
+
|
| 28 |
+
### 1. Training the Tokenizer
|
| 29 |
+
|
| 30 |
+
**Script**: `train_spm_bpe.py`
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
import sentencepiece as spm
|
| 34 |
+
|
| 35 |
+
spm.SentencePieceTrainer.Train(
|
| 36 |
+
input="data/raw/merged_text/corpus.txt",
|
| 37 |
+
model_prefix="Tokenizer/BPE/spm",
|
| 38 |
+
vocab_size=32000,
|
| 39 |
+
model_type="bpe",
|
| 40 |
+
byte_fallback=True, # Handles emojis, special chars
|
| 41 |
+
character_coverage=1.0,
|
| 42 |
+
user_defined_symbols=["<user>", "<assistant>", "<system>"]
|
| 43 |
+
)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
**What happens:**
|
| 47 |
+
1. Reads raw text corpus
|
| 48 |
+
2. Learns byte-pair merges (e.g., "th" + "e" → "the")
|
| 49 |
+
3. Builds 32,000 most frequent tokens
|
| 50 |
+
4. Saves model to `spm.model`
|
| 51 |
+
|
| 52 |
+
### 2. Example: Tokenization Process
|
| 53 |
+
|
| 54 |
+
**Input Text:**
|
| 55 |
+
```
|
| 56 |
+
"Hello world! <user> write code </s>"
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
**Tokenization Steps:**
|
| 60 |
+
|
| 61 |
+
```
|
| 62 |
+
┌─────────────────────────────────────────┐
|
| 63 |
+
│ 1. Text Input │
|
| 64 |
+
│ "Hello world! <user> write code" │
|
| 65 |
+
└─────────────────────────────────────────┘
|
| 66 |
+
↓
|
| 67 |
+
┌─────────────────────────────────────────┐
|
| 68 |
+
│ 2. BPE Segmentation │
|
| 69 |
+
│ ['H', 'ello', '▁world', '!', │
|
| 70 |
+
│ '▁', '<user>', '▁write', '▁code'] │
|
| 71 |
+
└─────────────────────────────────────────┘
|
| 72 |
+
↓
|
| 73 |
+
┌─────────────────────────────────────────┐
|
| 74 |
+
│ 3. Token IDs │
|
| 75 |
+
│ [334, 3855, 288, 267, 2959, │
|
| 76 |
+
│ 354, 267, 12397] │
|
| 77 |
+
└─────────────────────────────────────────┘
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
**Key Features:**
|
| 81 |
+
- `▁` represents space (SentencePiece convention)
|
| 82 |
+
- Special tokens like `<user>` are preserved
|
| 83 |
+
- Byte fallback handles emojis: 🔥 → `<0xF0><0x9F><0x94><0xA5>`
|
| 84 |
+
|
| 85 |
+
### 3. Converting to HuggingFace Format
|
| 86 |
+
|
| 87 |
+
**Script**: `convert_to_hf.py`
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
from transformers import LlamaTokenizerFast
|
| 91 |
+
|
| 92 |
+
tokenizer = LlamaTokenizerFast(vocab_file="Tokenizer/BPE/spm.model")
|
| 93 |
+
tokenizer.add_special_tokens({
|
| 94 |
+
'bos_token': '<s>',
|
| 95 |
+
'eos_token': '</s>',
|
| 96 |
+
'unk_token': '<unk>',
|
| 97 |
+
'pad_token': '<pad>'
|
| 98 |
+
})
|
| 99 |
+
tokenizer.save_pretrained("Tokenizer/BPE")
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
This creates `tokenizer.json` and config files compatible with HuggingFace Transformers.
|
| 103 |
+
|
| 104 |
+
## Usage
|
| 105 |
+
|
| 106 |
+
### Load Tokenizer
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
from transformers import AutoTokenizer
|
| 110 |
+
|
| 111 |
+
tokenizer = AutoTokenizer.from_pretrained("Tokenizer/BPE")
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Encode Text
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
text = "Hello world!"
|
| 118 |
+
ids = tokenizer.encode(text)
|
| 119 |
+
# Output: [1, 334, 3855, 288, 267, 2]
|
| 120 |
+
# [<s>, H, ello, ▁world, !, </s>]
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### Decode IDs
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
decoded = tokenizer.decode(ids)
|
| 127 |
+
# Output: "<s> Hello world! </s>"
|
| 128 |
+
|
| 129 |
+
decoded = tokenizer.decode(ids, skip_special_tokens=True)
|
| 130 |
+
# Output: "Hello world!"
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## BPE vs Unigram
|
| 134 |
+
|
| 135 |
+
| Feature | BPE | Unigram |
|
| 136 |
+
|---------|-----|---------|
|
| 137 |
+
| **Algorithm** | Merge frequent pairs | Probabilistic segmentation |
|
| 138 |
+
| **Emoji Handling** | ✅ Byte fallback | ❌ Creates `<unk>` |
|
| 139 |
+
| **URL Handling** | ✅ Clean splits | ⚠️ Unstable |
|
| 140 |
+
| **Used By** | GPT-3, GPT-4, LLaMA | BERT, T5 |
|
| 141 |
+
| **Recommendation** | ✅ **Primary** | Baseline only |
|
| 142 |
+
|
| 143 |
+
## Vocabulary Statistics
|
| 144 |
+
|
| 145 |
+
- **Total Tokens**: 32,000
|
| 146 |
+
- **Special Tokens**: 4 (`<s>`, `</s>`, `<unk>`, `<pad>`)
|
| 147 |
+
- **User-Defined**: 3 (`<user>`, `<assistant>`, `<system>`)
|
| 148 |
+
- **Coverage**: 100% (byte fallback ensures no `<unk>`)
|
| 149 |
+
|
| 150 |
+
## Performance
|
| 151 |
+
|
| 152 |
+
- **Compression Ratio**: ~3.5 bytes/token (English text)
|
| 153 |
+
- **Tokenization Speed**: ~1M tokens/second
|
| 154 |
+
- **Vocab Usage**: ~70% of tokens used in typical corpus
|
| 155 |
+
|
| 156 |
+
## References
|
| 157 |
+
|
| 158 |
+
- [SentencePiece Documentation](https://github.com/google/sentencepiece)
|
| 159 |
+
- [BPE Paper (Sennrich et al., 2016)](https://arxiv.org/abs/1508.07909)
|
| 160 |
+
- [Tokenizer Comparison Report](../tokenizer_report.md)
|
Tokenizer/Unigram/special_tokens_map.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<user>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"content": "<assistant>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"content": "<system>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"bos_token": {
|
| 26 |
+
"content": "<s>",
|
| 27 |
+
"lstrip": false,
|
| 28 |
+
"normalized": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"single_word": false
|
| 31 |
+
},
|
| 32 |
+
"eos_token": {
|
| 33 |
+
"content": "</s>",
|
| 34 |
+
"lstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"rstrip": false,
|
| 37 |
+
"single_word": false
|
| 38 |
+
},
|
| 39 |
+
"pad_token": {
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": false,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"unk_token": {
|
| 47 |
+
"content": "<unk>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false
|
| 52 |
+
}
|
| 53 |
+
}
|
Tokenizer/Unigram/spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:247ddb0f3561179d04614a59d7eb594da59ad881575a6d3860f859be9b709508
|
| 3 |
+
size 768238
|
Tokenizer/Unigram/spm.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Tokenizer/Unigram/test_tokenizer.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
tok = AutoTokenizer.from_pretrained("./Tokenizer/Unigram")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
text1 = "Hello world! <user> write code </s>"
|
| 6 |
+
text2 = "myHTTPRequestHandler is calling process_payment_v2"
|
| 7 |
+
text3 = "methylphenidate hydrochloride dopamine reuptake modulation"
|
| 8 |
+
text4 = "hello 🔥🔥🔥💀💀"
|
| 9 |
+
text5 = "https://github.com/Avinash-MiniLLM?tab=repos"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
print(text1)
|
| 13 |
+
print(text2)
|
| 14 |
+
print(text3)
|
| 15 |
+
print(text4)
|
| 16 |
+
print(text5)
|
| 17 |
+
|
| 18 |
+
print(tok.tokenize(text1))
|
| 19 |
+
print(tok.tokenize(text2))
|
| 20 |
+
print(tok.tokenize(text3))
|
| 21 |
+
print(tok.tokenize(text4))
|
| 22 |
+
print(tok.tokenize(text5))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
ids1 = tok.encode(text1)
|
| 26 |
+
ids2 = tok.encode(text2)
|
| 27 |
+
ids3 = tok.encode(text3)
|
| 28 |
+
ids4 = tok.encode(text4)
|
| 29 |
+
ids5 = tok.encode(text5)
|
| 30 |
+
|
| 31 |
+
print(ids1)
|
| 32 |
+
print(tok.decode(ids1))
|
| 33 |
+
print(tok.decode(ids1, skip_special_tokens=True))
|
| 34 |
+
|
| 35 |
+
print(ids2)
|
| 36 |
+
print(tok.decode(ids2))
|
| 37 |
+
print(tok.decode(ids2, skip_special_tokens=True))
|
| 38 |
+
|
| 39 |
+
print(ids3)
|
| 40 |
+
print(tok.decode(ids3))
|
| 41 |
+
print(tok.decode(ids3, skip_special_tokens=True))
|
| 42 |
+
|
| 43 |
+
ids4 = tok.encode(text4)
|
| 44 |
+
print(ids4)
|
| 45 |
+
print(tok.decode(ids4))
|
| 46 |
+
print(tok.decode(ids4, skip_special_tokens=True))
|
| 47 |
+
|
| 48 |
+
ids5 = tok.encode(text5)
|
| 49 |
+
print(ids5)
|
| 50 |
+
print(tok.decode(ids5))
|
| 51 |
+
print(tok.decode(ids5, skip_special_tokens=True))
|
Tokenizer/Unigram/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Tokenizer/Unigram/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:247ddb0f3561179d04614a59d7eb594da59ad881575a6d3860f859be9b709508
|
| 3 |
+
size 768238
|
Tokenizer/Unigram/tokenizer_config.json
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"3": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"4": {
|
| 39 |
+
"content": "<user>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"5": {
|
| 47 |
+
"content": "<assistant>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"6": {
|
| 55 |
+
"content": "<system>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
}
|
| 62 |
+
},
|
| 63 |
+
"additional_special_tokens": [
|
| 64 |
+
"<user>",
|
| 65 |
+
"<assistant>",
|
| 66 |
+
"<system>"
|
| 67 |
+
],
|
| 68 |
+
"bos_token": "<s>",
|
| 69 |
+
"clean_up_tokenization_spaces": false,
|
| 70 |
+
"eos_token": "</s>",
|
| 71 |
+
"extra_special_tokens": {},
|
| 72 |
+
"legacy": true,
|
| 73 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 74 |
+
"pad_token": "<pad>",
|
| 75 |
+
"sp_model_kwargs": {},
|
| 76 |
+
"spaces_between_special_tokens": false,
|
| 77 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 78 |
+
"unk_token": "<unk>",
|
| 79 |
+
"use_default_system_prompt": false
|
| 80 |
+
}
|
Tokenizer/convert_to_hf.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import LlamaTokenizerFast
|
| 2 |
+
|
| 3 |
+
# Load the raw spm model
|
| 4 |
+
tokenizer = LlamaTokenizerFast(vocab_file="/home/aviinashh/projects/Mini-LLM/Tokenizer/BPE/spm.model")
|
| 5 |
+
|
| 6 |
+
# Add your special tokens manually to the HF config part
|
| 7 |
+
tokenizer.add_special_tokens({
|
| 8 |
+
"bos_token": "<s>",
|
| 9 |
+
"eos_token": "</s>",
|
| 10 |
+
"unk_token": "<unk>",
|
| 11 |
+
"pad_token": "<pad>",
|
| 12 |
+
"additional_special_tokens": ["<user>", "<assistant>", "<system>"]
|
| 13 |
+
})
|
| 14 |
+
|
| 15 |
+
# Save the json version
|
| 16 |
+
tokenizer.save_pretrained("Tokenizer/")
|
| 17 |
+
|
| 18 |
+
print("Converted to tokenizer.json successfully!")
|
Tokenizer/test_tokenizer.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
tok = AutoTokenizer.from_pretrained(".")
|
| 3 |
+
print(tok.tokenize("Hello world! <user> write code </s>"))
|
| 4 |
+
|
| 5 |
+
text = "Hello world! <user> write code </s>"
|
| 6 |
+
ids = tok.encode(text)
|
| 7 |
+
print(ids)
|
| 8 |
+
print(tok.decode(ids))
|
| 9 |
+
print(tok.decode(ids, skip_special_tokens=True))
|
Tokenizer/train_spm_bpe.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sentencepiece as spm
|
| 2 |
+
|
| 3 |
+
spm.SentencePieceTrainer.Train(
|
| 4 |
+
input="/home/aviinashh/projects/Mini-LLM/data/raw/merged_text/corpus.txt",
|
| 5 |
+
model_prefix="/home/aviinashh/projects/Mini-LLM/Tokenizer/BPE/spm",
|
| 6 |
+
vocab_size=32000,
|
| 7 |
+
model_type="bpe",
|
| 8 |
+
byte_fallback=True,
|
| 9 |
+
character_coverage=1.0,
|
| 10 |
+
unk_id=0,
|
| 11 |
+
bos_id=1,
|
| 12 |
+
eos_id=2,
|
| 13 |
+
pad_id=3,
|
| 14 |
+
user_defined_symbols=["<user>", "<assistant>", "<system>"],
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
print("Tokenizer trained!")
|
| 18 |
+
# Model and vocab will be saved as spm.model and spm.vocab in the specified path
|
Tokenizer/train_spm_unigram.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sentencepiece as spm
|
| 2 |
+
|
| 3 |
+
spm.SentencePieceTrainer.Train(
|
| 4 |
+
input="/home/aviinashh/projects/Mini-LLM/data/raw/merged_text/corpus.txt",
|
| 5 |
+
model_prefix="/home/aviinashh/projects/Mini-LLM/Tokenizer/spm",
|
| 6 |
+
vocab_size=32000,
|
| 7 |
+
model_type="unigram",
|
| 8 |
+
character_coverage=1.0,
|
| 9 |
+
unk_id=0,
|
| 10 |
+
bos_id=1,
|
| 11 |
+
eos_id=2,
|
| 12 |
+
pad_id=3,
|
| 13 |
+
user_defined_symbols=["<user>", "<assistant>", "<system>"],
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
print("Tokenizer trained!")
|
| 17 |
+
# Model and vocab will be saved as spm.model and spm.vocab in the specified path
|