Beyond Correctness: Learning Robust Reasoning via Transfer
Abstract
Reinforcement Learning with Transferable Reward (RLTR) enhances LLM reasoning robustness by ensuring reasoning stability and generalizability through transfer rewards that test cross-model guidance capabilities.
Reinforcement Learning with Verifiable Rewards (RLVR) has recently strengthened LLM reasoning, but its focus on final answer correctness leaves a critical gap: it does not ensure the robustness of the reasoning process itself. We adopt a simple philosophical view, robust reasoning should remain useful beyond the mind that produced it, and treat reasoning as a form of meaning transfer that must survive truncation, reinterpretation, and continuation. Building on this principle, we introduce Reinforcement Learning with Transferable Reward (RLTR), which operationalizes robustness via transfer reward that tests whether a partial reasoning prefix from one model can guide a separate model to the correct answer. This encourages LLMs to produce reasoning that is stable, interpretable, and genuinely generalizable. Our approach improves sampling consistency while improving final answer accuracy, and it reaches comparable performance in substantially fewer training steps. For example, on MATH500, RLTR achieves a +3.6%p gain in Maj@64 compared to RLVR and matches RLVR's average accuracy with roughly 2.5x fewer training steps, providing both more reliable reasoning and significantly more sample efficient.
Community
Reinforcement Learning with Verifiable Rewards (RLVR) has recently strengthened LLM reasoning, but its focus on final answer correctness leaves a critical gap: it does not ensure the robustness of the reasoning process itself. We adopt a simple philosophical view, robust reasoning should remain useful beyond the mind that produced it, and treat reasoning as a form of meaning transfer that must survive truncation, reinterpretation, and continuation. Building on this principle, we introduce Reinforcement Learning with Transferable Reward (RLTR), which operationalizes robustness via transfer reward that tests whether a partial reasoning prefix from one model can guide a separate model to the correct answer. This encourages LLMs to produce reasoning that is stable, interpretable, and genuinely generalizable. Our approach improves sampling consistency while improving final answer accuracy, and it reaches comparable performance in substantially fewer training steps. For example, on MATH500, RLTR achieves a +3.6%p gain in Maj@64 compared to RLVR and matches RLVR's average accuracy with roughly 2.5x fewer training steps, providing both more reliable reasoning and significantly more sample efficient.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Step Potential Advantage Estimation: Harnessing Intermediate Confidence and Correctness for Efficient Mathematical Reasoning (2026)
- DARL: Encouraging Diverse Answers for General Reasoning without Verifiers (2026)
- P2S: Probabilistic Process Supervision for General-Domain Reasoning Question Answering (2026)
- Well Begun, Half Done: Reinforcement Learning with Prefix Optimization for LLM Reasoning (2025)
- Learning to Self-Verify Makes Language Models Better Reasoners (2026)
- Training Reasoning Models on Saturated Problems via Failure-Prefix Conditioning (2026)
- Correct, Concise and Complete: Multi-stage Training For Adaptive Reasoning (2026)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper