Efficient Text-Guided Convolutional Adapter for the Diffusion Model
Abstract
Nexus Adapters are efficient text-guided adapters for diffusion models that preserve structure while enhancing prompt understanding through cross-attention mechanisms, achieving state-of-the-art results with significantly fewer parameters.
We introduce the Nexus Adapters, novel text-guided efficient adapters to the diffusion-based framework for the Structure Preserving Conditional Generation (SPCG). Recently, structure-preserving methods have achieved promising results in conditional image generation by using a base model for prompt conditioning and an adapter for structure input, such as sketches or depth maps. These approaches are highly inefficient and sometimes require equal parameters in the adapter compared to the base architecture. It is not always possible to train the model since the diffusion model is itself costly, and doubling the parameter is highly inefficient. In these approaches, the adapter is not aware of the input prompt; therefore, it is optimal only for the structural input but not for the input prompt. To overcome the above challenges, we proposed two efficient adapters, Nexus Prime and Slim, which are guided by prompts and structural inputs. Each Nexus Block incorporates cross-attention mechanisms to enable rich multimodal conditioning. Therefore, the proposed adapter has a better understanding of the input prompt while preserving the structure. We conducted extensive experiments on the proposed models and demonstrated that the Nexus Prime adapter significantly enhances performance, requiring only 8M additional parameters compared to the baseline, T2I-Adapter. Furthermore, we also introduced a lightweight Nexus Slim adapter with 18M fewer parameters than the T2I-Adapter, which still achieved state-of-the-art results. Code: https://github.com/arya-domain/Nexus-Adapters
Community
We introduce the Nexus Adapters, novel text-guided efficient adapters to the diffusion-based framework for the Structure Preserving Conditional Generation (SPCG). Recently, structure-preserving methods have achieved promising results in conditional image generation by using a base model for prompt conditioning and an adapter for structure input, such as sketches or depth maps. These approaches are highly inefficient and sometimes require equal parameters in the adapter compared to the base architecture. It is not always possible to train the model since the diffusion model is itself costly, and doubling the parameter is highly inefficient. In these approaches, the adapter is not aware of the input prompt; therefore, it is optimal only for the structural input but not for the input prompt. To overcome the above challenges, we proposed two efficient adapters, Nexus Prime and Slim, which are guided by prompts and structural inputs. Each Nexus Block incorporates cross-attention mechanisms to enable rich multimodal conditioning. Therefore, the proposed adapter has a better understanding of the input prompt while preserving the structure. We conducted extensive experiments on the proposed models and demonstrated that the Nexus Prime adapter significantly enhances performance, requiring only 8M additional parameters compared to the baseline, T2I-Adapter. Furthermore, we also introduced a lightweight Nexus Slim adapter with 18M fewer parameters than the T2I-Adapter, which still achieved state-of-the-art results.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation (2026)
- Sissi: Zero-shot Style-guided Image Synthesis via Semantic-style Integration (2026)
- SafeRedir: Prompt Embedding Redirection for Robust Unlearning in Image Generation Models (2026)
- SLGNet: Synergizing Structural Priors and Language-Guided Modulation for Multimodal Object Detection (2026)
- AnyMS: Bottom-up Attention Decoupling for Layout-guided and Training-free Multi-subject Customization (2025)
- ACD: Direct Conditional Control for Video Diffusion Models via Attention Supervision (2025)
- CritiFusion: Semantic Critique and Spectral Alignment for Faithful Text-to-Image Generation (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper