new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Astrometric Effects of a Stochastic Gravitational Wave Background

A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.

  • 2 authors
·
Sep 21, 2010

General teleparallel geometric theory of defects

We revisit the geometric theory of defects. In the differential-geometric models of defects that have been adopted since the 1950s, dislocations have been associated with torsion, disclinations with the full curvature, and point defects with the first kind trace of non-metricity. The mainstream formulation exhibits several conceptual and technical shortcomings, most notably a hierarchy inconsistency, the non-exictence of a genuine metric formulation, and the potential emergence of Ostrogradsky-type instabilities. These issues have motivated us to develop a new framework, namely a generalized teleparallel geometric theory of defects. In our model, dislocations are identified with the trace of torsion, disclinations with the second kind trace of the non-metricity, and point defects with the first kind trace of the non-metricity. In addition, we retain the scalar part torsion as a free parameter for describing some possible unknown degrees of freedom in the theory of defects. The proposed geometric theory of defects is free from all of the aforementioned drawbacks and is therefore worthy of further investigation. To ensure the coherence and completeness of the discussion, we begin our analysis with elastic deformations, then summarize the existing metric-affine geometric theory of defects, and finally proceed to our original contribution, namely the new theory introduced here. We formulate the entire theory in Eulerian coordinates. Naturally, all results can be reformulated in Lagrangian coordinates as well. All analyses and formulae are expressed in the language of exterior algebra and are carried out in coordinate-independent orthonormal frames.

  • 3 authors
·
Feb 1

The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.

  • 27 authors
·
Sep 26, 2023
Daily Papers - Hugging Face
new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Astrometric Effects of a Stochastic Gravitational Wave Background

A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.

  • 2 authors
·
Sep 21, 2010

General teleparallel geometric theory of defects

We revisit the geometric theory of defects. In the differential-geometric models of defects that have been adopted since the 1950s, dislocations have been associated with torsion, disclinations with the full curvature, and point defects with the first kind trace of non-metricity. The mainstream formulation exhibits several conceptual and technical shortcomings, most notably a hierarchy inconsistency, the non-exictence of a genuine metric formulation, and the potential emergence of Ostrogradsky-type instabilities. These issues have motivated us to develop a new framework, namely a generalized teleparallel geometric theory of defects. In our model, dislocations are identified with the trace of torsion, disclinations with the second kind trace of the non-metricity, and point defects with the first kind trace of the non-metricity. In addition, we retain the scalar part torsion as a free parameter for describing some possible unknown degrees of freedom in the theory of defects. The proposed geometric theory of defects is free from all of the aforementioned drawbacks and is therefore worthy of further investigation. To ensure the coherence and completeness of the discussion, we begin our analysis with elastic deformations, then summarize the existing metric-affine geometric theory of defects, and finally proceed to our original contribution, namely the new theory introduced here. We formulate the entire theory in Eulerian coordinates. Naturally, all results can be reformulated in Lagrangian coordinates as well. All analyses and formulae are expressed in the language of exterior algebra and are carried out in coordinate-independent orthonormal frames.

  • 3 authors
·
Feb 1

The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.

  • 27 authors
·
Sep 26, 2023