LLaMaCoder

Model Description

LLaMaCoder is based on LLaMa2 7B language model, finetuned using LoRA adaptors.

Usage

Generate code with LLaMaCoder in 4bit model according to the following python snippet:

from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
import torch

MODEL_NAME = "Sakuna/LLaMaCoderAll"
device = "cuda:0"


bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

model = model.to(device)
model.eval()

prompt = "Write a Java program to calculate the factorial of a given number k"
input = f"{prompt}\n### Solution:\n"
device = "cuda:0"

inputs = tokenizer(input, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=256, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Sakuna/LLaMaCoderAll

Sakuna/LLaMaCoderAll · Hugging Face

LLaMaCoder

Model Description

LLaMaCoder is based on LLaMa2 7B language model, finetuned using LoRA adaptors.

Usage

Generate code with LLaMaCoder in 4bit model according to the following python snippet:

from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
import torch

MODEL_NAME = "Sakuna/LLaMaCoderAll"
device = "cuda:0"


bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

model = model.to(device)
model.eval()

prompt = "Write a Java program to calculate the factorial of a given number k"
input = f"{prompt}\n### Solution:\n"
device = "cuda:0"

inputs = tokenizer(input, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=256, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Sakuna/LLaMaCoderAll