• this is 4bit 60B MoE model trained by SFTTrainer based on [cloudyu/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO]

  • nampdn-ai/tiny-codes sampling about 2000 cases

  • Metrics not Test

    code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

model_path = "cloudyu/60B-MoE-Coder-v2"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=1500,repetition_penalty=1.1
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
Downloads last month
25
Safetensors
Model size
62B params
Tensor type
BF16
F32
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support
cloudyu/60B-MoE-Coder-v2 路 Hugging Face
  • this is 4bit 60B MoE model trained by SFTTrainer based on [cloudyu/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO]

  • nampdn-ai/tiny-codes sampling about 2000 cases

  • Metrics not Test

    code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

model_path = "cloudyu/60B-MoE-Coder-v2"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=1500,repetition_penalty=1.1
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
Downloads last month
25
Safetensors
Model size
62B params
Tensor type
BF16
F32
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support