Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
domains: struct<ai_agents: struct<docs: list<item: string>, count: int64>, development: struct<docs: list<item: string>, count: int64>, content_generation: struct<docs: list<item: string>, count: int64>, brand_identity: struct<docs: list<item: string>, count: int64>, audio_generation: struct<docs: list<item: string>, count: int64>, marketing_seo: struct<docs: list<item: string>, count: int64>, chatbot: struct<docs: list<item: string>, count: int64>, planning_admin: struct<docs: list<item: string>, count: int64>, animation_generation: struct<docs: list<item: string>, count: int64>>
domain_info: struct<marketing_seo: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, ai_agents: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, chatbot: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, content_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, audio_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, animation_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, planning_admin: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, brand_identity: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, development: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>>
vs
metadata: struct<name: string, version: string, created_at: string, total_documents: int64, domains: list<item: string>, teams: list<item: string>>
documents: list<item: struct<id: string, title: string, filepath: string, msc_domains: list<item: string>, assigned_team: string, content_hash: string, stats: struct<word_count: int64, line_count: int64, char_count: int64, code_blocks: int64, headers: int64>, qa_pairs_count: int64, instructions_count: int64, definitions_count: int64, chunks_count: int64>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 563, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              domains: struct<ai_agents: struct<docs: list<item: string>, count: int64>, development: struct<docs: list<item: string>, count: int64>, content_generation: struct<docs: list<item: string>, count: int64>, brand_identity: struct<docs: list<item: string>, count: int64>, audio_generation: struct<docs: list<item: string>, count: int64>, marketing_seo: struct<docs: list<item: string>, count: int64>, chatbot: struct<docs: list<item: string>, count: int64>, planning_admin: struct<docs: list<item: string>, count: int64>, animation_generation: struct<docs: list<item: string>, count: int64>>
              domain_info: struct<marketing_seo: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, ai_agents: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, chatbot: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, content_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, audio_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, animation_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, planning_admin: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, brand_identity: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, development: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>>
              vs
              metadata: struct<name: string, version: string, created_at: string, total_documents: int64, domains: list<item: string>, teams: list<item: string>>
              documents: list<item: struct<id: string, title: string, filepath: string, msc_domains: list<item: string>, assigned_team: string, content_hash: string, stats: struct<word_count: int64, line_count: int64, char_count: int64, code_blocks: int64, headers: int64>, qa_pairs_count: int64, instructions_count: int64, definitions_count: int64, chunks_count: int64>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

msc-knowledge-base

Base de conhecimento completa da MSC Marketing para RAG e fine-tuning

Sobre

Este dataset faz parte da infraestrutura de IA da MSC Marketing, uma empresa especializada em Marketing Digital e SEO.

Uso

from datasets import load_dataset

dataset = load_dataset("Finish-him/msc-knowledge-base")

Estrutura

Os arquivos incluídos neste dataset são:

  • msc_documents.json
  • domain_distribution.json
  • team_distribution.json

Licença

MIT License - MSC Marketing

Contato

Downloads last month
7

Spaces using Finish-him/msc-knowledge-base 2

Finish-him/msc-knowledge-base · Datasets at Hugging Face
Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
domains: struct<ai_agents: struct<docs: list<item: string>, count: int64>, development: struct<docs: list<item: string>, count: int64>, content_generation: struct<docs: list<item: string>, count: int64>, brand_identity: struct<docs: list<item: string>, count: int64>, audio_generation: struct<docs: list<item: string>, count: int64>, marketing_seo: struct<docs: list<item: string>, count: int64>, chatbot: struct<docs: list<item: string>, count: int64>, planning_admin: struct<docs: list<item: string>, count: int64>, animation_generation: struct<docs: list<item: string>, count: int64>>
domain_info: struct<marketing_seo: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, ai_agents: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, chatbot: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, content_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, audio_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, animation_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, planning_admin: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, brand_identity: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, development: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>>
vs
metadata: struct<name: string, version: string, created_at: string, total_documents: int64, domains: list<item: string>, teams: list<item: string>>
documents: list<item: struct<id: string, title: string, filepath: string, msc_domains: list<item: string>, assigned_team: string, content_hash: string, stats: struct<word_count: int64, line_count: int64, char_count: int64, code_blocks: int64, headers: int64>, qa_pairs_count: int64, instructions_count: int64, definitions_count: int64, chunks_count: int64>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 563, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              domains: struct<ai_agents: struct<docs: list<item: string>, count: int64>, development: struct<docs: list<item: string>, count: int64>, content_generation: struct<docs: list<item: string>, count: int64>, brand_identity: struct<docs: list<item: string>, count: int64>, audio_generation: struct<docs: list<item: string>, count: int64>, marketing_seo: struct<docs: list<item: string>, count: int64>, chatbot: struct<docs: list<item: string>, count: int64>, planning_admin: struct<docs: list<item: string>, count: int64>, animation_generation: struct<docs: list<item: string>, count: int64>>
              domain_info: struct<marketing_seo: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, ai_agents: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, chatbot: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, content_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, audio_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, animation_generation: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, planning_admin: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, brand_identity: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>, development: struct<name: string, description: string, keywords: list<item: string>, future_team: string, priority: int64>>
              vs
              metadata: struct<name: string, version: string, created_at: string, total_documents: int64, domains: list<item: string>, teams: list<item: string>>
              documents: list<item: struct<id: string, title: string, filepath: string, msc_domains: list<item: string>, assigned_team: string, content_hash: string, stats: struct<word_count: int64, line_count: int64, char_count: int64, code_blocks: int64, headers: int64>, qa_pairs_count: int64, instructions_count: int64, definitions_count: int64, chunks_count: int64>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

msc-knowledge-base

Base de conhecimento completa da MSC Marketing para RAG e fine-tuning

Sobre

Este dataset faz parte da infraestrutura de IA da MSC Marketing, uma empresa especializada em Marketing Digital e SEO.

Uso

from datasets import load_dataset

dataset = load_dataset("Finish-him/msc-knowledge-base")

Estrutura

Os arquivos incluídos neste dataset são:

  • msc_documents.json
  • domain_distribution.json
  • team_distribution.json

Licença

MIT License - MSC Marketing

Contato

Downloads last month
7

Spaces using Finish-him/msc-knowledge-base 2