Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
name: string
version: string
created_at: string
description: string
statistics: struct<total_items: int64, categories: struct<devops: int64>, sources: struct<huggingface: int64>, average_quality_score: double, quality_distribution: struct<high (>0.8): int64, medium (0.7-0.8): int64, low (<0.7): int64>>
collection: struct<sources_stats: struct<huggingface: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, github_gists: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, official_docs: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>>, quality_validation: struct<total_checked: int64, accepted: int64, rejected: int64, acceptance_rate: double, top_rejection_reasons: struct<Quality score too low: int64, Question too long: int64, Contains toxic content: int64, Contains spam keywords: int64, 1 validation error for QAItem
answer
  Value error, Answer is too short or empty [type=value_error, input_value='<p>g++ and make</p>\n', input_type=str]
    For further information visit https: int64>>, deduplication: struct<total_checked: int64, exact_duplicates: int64, semantic_duplicates: int64, unique: int64, unique_rate: double, hashes_in_cache: int64, embeddings_in_cache: int64>>
files: struct<created: list<item: string>, total_size_mb: double, checksums: struct<devops_dataset.jsonl: string, devops_dataset.jsonl.gz: string, devops_dataset.parquet: string>>
schema: struct<id: string, question: string, answer: string, tags: string, source: string, category: string, quality_score: string, question_score: string, answer_score: string, has_code: string, url: string, collected_at: string>
license: string
usage: string
vs
id: string
question: string
question_body: string
answer: string
tags: list<item: string>
source: string
category: string
difficulty: string
quality_score: double
question_score: int64
answer_score: int64
has_code: bool
url: string
collected_at: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 547, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              name: string
              version: string
              created_at: string
              description: string
              statistics: struct<total_items: int64, categories: struct<devops: int64>, sources: struct<huggingface: int64>, average_quality_score: double, quality_distribution: struct<high (>0.8): int64, medium (0.7-0.8): int64, low (<0.7): int64>>
              collection: struct<sources_stats: struct<huggingface: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, github_gists: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, official_docs: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>>, quality_validation: struct<total_checked: int64, accepted: int64, rejected: int64, acceptance_rate: double, top_rejection_reasons: struct<Quality score too low: int64, Question too long: int64, Contains toxic content: int64, Contains spam keywords: int64, 1 validation error for QAItem
              answer
                Value error, Answer is too short or empty [type=value_error, input_value='<p>g++ and make</p>\n', input_type=str]
                  For further information visit https: int64>>, deduplication: struct<total_checked: int64, exact_duplicates: int64, semantic_duplicates: int64, unique: int64, unique_rate: double, hashes_in_cache: int64, embeddings_in_cache: int64>>
              files: struct<created: list<item: string>, total_size_mb: double, checksums: struct<devops_dataset.jsonl: string, devops_dataset.jsonl.gz: string, devops_dataset.parquet: string>>
              schema: struct<id: string, question: string, answer: string, tags: string, source: string, category: string, quality_score: string, question_score: string, answer_score: string, has_code: string, url: string, collected_at: string>
              license: string
              usage: string
              vs
              id: string
              question: string
              question_body: string
              answer: string
              tags: list<item: string>
              source: string
              category: string
              difficulty: string
              quality_score: double
              question_score: int64
              answer_score: int64
              has_code: bool
              url: string
              collected_at: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

DevOps Q&A Dataset v1.0

Overview

High-quality dataset of 25,670 DevOps technical examples collected from GitHub repositories, Stack Exchange, and official documentation.

Statistics

  • Total examples: 25,670
  • Average quality score: ~0.82
  • Unique (deduplicated): High accuracy via MD5
  • Categories: Docker, Kubernetes, CI/CD, Cloud, Linux, Terraform, Ansible
  • Sources: StackExchange/HuggingFace (70%), GitHub Repositories (29%), Official Documentation (~1%)

Use Cases

  • Fine-tuning LLMs for DevOps automation
  • Training specialized models for technical documentation
  • DevOps support chatbot development
  • Infrastructure-as-Code assistant

Dataset Schema

{
  "question": "How to fix OOMKilled errors in Kubernetes?",
  "answer": "1. Check pod memory limits...",
  "category": "kubernetes",
  "difficulty": "intermediate",
  "quality_score": 0.89,
  "source": "github"
}

Download

from datasets import load_dataset
dataset = load_dataset("Skilln/devops-qa-dataset")

License

CC-BY-SA 4.0 (compatible with source licenses)

Citation

@dataset{devops_qa_2026,
  title={DevOps Q&A Dataset},
  author={Skilln},
  year={2026},
  url={https://huggingface.co/datasets/Skilln/devops-qa-dataset}
}
Downloads last month
44
Skilln/devops-qa-dataset · Datasets at Hugging Face
Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
name: string
version: string
created_at: string
description: string
statistics: struct<total_items: int64, categories: struct<devops: int64>, sources: struct<huggingface: int64>, average_quality_score: double, quality_distribution: struct<high (>0.8): int64, medium (0.7-0.8): int64, low (<0.7): int64>>
collection: struct<sources_stats: struct<huggingface: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, github_gists: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, official_docs: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>>, quality_validation: struct<total_checked: int64, accepted: int64, rejected: int64, acceptance_rate: double, top_rejection_reasons: struct<Quality score too low: int64, Question too long: int64, Contains toxic content: int64, Contains spam keywords: int64, 1 validation error for QAItem
answer
  Value error, Answer is too short or empty [type=value_error, input_value='<p>g++ and make</p>\n', input_type=str]
    For further information visit https: int64>>, deduplication: struct<total_checked: int64, exact_duplicates: int64, semantic_duplicates: int64, unique: int64, unique_rate: double, hashes_in_cache: int64, embeddings_in_cache: int64>>
files: struct<created: list<item: string>, total_size_mb: double, checksums: struct<devops_dataset.jsonl: string, devops_dataset.jsonl.gz: string, devops_dataset.parquet: string>>
schema: struct<id: string, question: string, answer: string, tags: string, source: string, category: string, quality_score: string, question_score: string, answer_score: string, has_code: string, url: string, collected_at: string>
license: string
usage: string
vs
id: string
question: string
question_body: string
answer: string
tags: list<item: string>
source: string
category: string
difficulty: string
quality_score: double
question_score: int64
answer_score: int64
has_code: bool
url: string
collected_at: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 547, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              name: string
              version: string
              created_at: string
              description: string
              statistics: struct<total_items: int64, categories: struct<devops: int64>, sources: struct<huggingface: int64>, average_quality_score: double, quality_distribution: struct<high (>0.8): int64, medium (0.7-0.8): int64, low (<0.7): int64>>
              collection: struct<sources_stats: struct<huggingface: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, github_gists: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>, official_docs: struct<status: string, fetched: int64, saved: int64, ban_until: null, errors: int64>>, quality_validation: struct<total_checked: int64, accepted: int64, rejected: int64, acceptance_rate: double, top_rejection_reasons: struct<Quality score too low: int64, Question too long: int64, Contains toxic content: int64, Contains spam keywords: int64, 1 validation error for QAItem
              answer
                Value error, Answer is too short or empty [type=value_error, input_value='<p>g++ and make</p>\n', input_type=str]
                  For further information visit https: int64>>, deduplication: struct<total_checked: int64, exact_duplicates: int64, semantic_duplicates: int64, unique: int64, unique_rate: double, hashes_in_cache: int64, embeddings_in_cache: int64>>
              files: struct<created: list<item: string>, total_size_mb: double, checksums: struct<devops_dataset.jsonl: string, devops_dataset.jsonl.gz: string, devops_dataset.parquet: string>>
              schema: struct<id: string, question: string, answer: string, tags: string, source: string, category: string, quality_score: string, question_score: string, answer_score: string, has_code: string, url: string, collected_at: string>
              license: string
              usage: string
              vs
              id: string
              question: string
              question_body: string
              answer: string
              tags: list<item: string>
              source: string
              category: string
              difficulty: string
              quality_score: double
              question_score: int64
              answer_score: int64
              has_code: bool
              url: string
              collected_at: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

DevOps Q&A Dataset v1.0

Overview

High-quality dataset of 25,670 DevOps technical examples collected from GitHub repositories, Stack Exchange, and official documentation.

Statistics

  • Total examples: 25,670
  • Average quality score: ~0.82
  • Unique (deduplicated): High accuracy via MD5
  • Categories: Docker, Kubernetes, CI/CD, Cloud, Linux, Terraform, Ansible
  • Sources: StackExchange/HuggingFace (70%), GitHub Repositories (29%), Official Documentation (~1%)

Use Cases

  • Fine-tuning LLMs for DevOps automation
  • Training specialized models for technical documentation
  • DevOps support chatbot development
  • Infrastructure-as-Code assistant

Dataset Schema

{
  "question": "How to fix OOMKilled errors in Kubernetes?",
  "answer": "1. Check pod memory limits...",
  "category": "kubernetes",
  "difficulty": "intermediate",
  "quality_score": 0.89,
  "source": "github"
}

Download

from datasets import load_dataset
dataset = load_dataset("Skilln/devops-qa-dataset")

License

CC-BY-SA 4.0 (compatible with source licenses)

Citation

@dataset{devops_qa_2026,
  title={DevOps Q&A Dataset},
  author={Skilln},
  year={2026},
  url={https://huggingface.co/datasets/Skilln/devops-qa-dataset}
}
Downloads last month
44