Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

HLS Burn Scars Dataset (Zarr Format)

Dataset Summary

This dataset contains Harmonized Landsat and Sentinel-2 (HLS) satellite imagery of wildfire burn scars and associated segmentation masks for the years 2018-2021 over the contiguous United States. The dataset includes 804 scenes of 512×512 pixels, optimized for training geospatial machine learning models.

Key Features:

  • 6 spectral bands per image (Blue, Green, Red, NIR, SWIR1, SWIR2)
  • Binary segmentation masks for burn scar detection
  • Zarr format for efficient cloud storage and streaming access
  • 540 training samples + 264 validation samples

Dataset Structure

hls_burn_scars_zarr/
├── training.zarr/
│   ├── images/      # Shape: (540, 6, 512, 512), dtype: float32
│   └── masks/       # Shape: (540, 512, 512), dtype: int16
└── validation.zarr/
    ├── images/      # Shape: (264, 6, 512, 512), dtype: float32
    └── masks/       # Shape: (264, 512, 512), dtype: int16

Data Format

Images:

  • Shape: (6, 512, 512) - 6 spectral bands, 512×512 pixels
  • Data type: float32
  • Values: Normalized surface reflectance (0-1)
  • Resolution: 30m per pixel

Masks:

  • Shape: (512, 512)
  • Data type: int16
  • Values:
    • 1 = Burn scar
    • 0 = Not burned
    • -1 = No data/missing

Band Information

Each scene contains six bands from HLS S30:

Channel Name HLS Band Wavelength (μm)
1 Blue B02 0.45-0.51
2 Green B03 0.53-0.59
3 Red B04 0.64-0.67
4 NIR B8A 0.85-0.88
5 SWIR1 B11 1.57-1.65
6 SWIR2 B12 2.11-2.29

Class Distribution

  • Burn Scar: 11%
  • Not Burned: 88%
  • No Data: 1%

Data Splits

  • Training: 540 samples (67%)
  • Validation: 264 samples (33%)

Usage

Using with ml-data Library

import ml_data

# Load training data
train_dataset = ml_data.load('hls_burn_scars', split='train')
val_dataset = ml_data.load('hls_burn_scars', split='val')

# Get samples
image, mask = train_dataset[0]
print(f"Image shape: {image.shape}")  # (6, 512, 512)
print(f"Mask shape: {mask.shape}")    # (512, 512)

# Batch loading
images, masks = train_dataset.get_batch([0, 1, 2, 3, 4])

Processing

  • All bands converted to surface reflectance
  • Normalized to 0-1 range
  • Compressed using Blosc/zstd (compression level 3)
  • Stored in Zarr v2 format for efficient access

Citation

If this dataset helped your research, please cite:

@software{HLS_Foundation_2023,
    author = {Phillips, Christopher and Roy, Sujit and Ankur, Kumar and Ramachandran, Rahul},
    doi    = {10.57967/hf/0956},
    month  = aug,
    title  = {{HLS Foundation Burnscars Dataset}},
    url    = {https://huggingface.co/datasets/nasa-impact/hls_burn_scars},
    year   = {2023}
}

License

This dataset is released under the Creative Commons Attribution 4.0 International (CC-BY-4.0) license.

Downloads last month
1
harshinde/hls-burn-scars-zarr · Datasets at Hugging Face
Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

HLS Burn Scars Dataset (Zarr Format)

Dataset Summary

This dataset contains Harmonized Landsat and Sentinel-2 (HLS) satellite imagery of wildfire burn scars and associated segmentation masks for the years 2018-2021 over the contiguous United States. The dataset includes 804 scenes of 512×512 pixels, optimized for training geospatial machine learning models.

Key Features:

  • 6 spectral bands per image (Blue, Green, Red, NIR, SWIR1, SWIR2)
  • Binary segmentation masks for burn scar detection
  • Zarr format for efficient cloud storage and streaming access
  • 540 training samples + 264 validation samples

Dataset Structure

hls_burn_scars_zarr/
├── training.zarr/
│   ├── images/      # Shape: (540, 6, 512, 512), dtype: float32
│   └── masks/       # Shape: (540, 512, 512), dtype: int16
└── validation.zarr/
    ├── images/      # Shape: (264, 6, 512, 512), dtype: float32
    └── masks/       # Shape: (264, 512, 512), dtype: int16

Data Format

Images:

  • Shape: (6, 512, 512) - 6 spectral bands, 512×512 pixels
  • Data type: float32
  • Values: Normalized surface reflectance (0-1)
  • Resolution: 30m per pixel

Masks:

  • Shape: (512, 512)
  • Data type: int16
  • Values:
    • 1 = Burn scar
    • 0 = Not burned
    • -1 = No data/missing

Band Information

Each scene contains six bands from HLS S30:

Channel Name HLS Band Wavelength (μm)
1 Blue B02 0.45-0.51
2 Green B03 0.53-0.59
3 Red B04 0.64-0.67
4 NIR B8A 0.85-0.88
5 SWIR1 B11 1.57-1.65
6 SWIR2 B12 2.11-2.29

Class Distribution

  • Burn Scar: 11%
  • Not Burned: 88%
  • No Data: 1%

Data Splits

  • Training: 540 samples (67%)
  • Validation: 264 samples (33%)

Usage

Using with ml-data Library

import ml_data

# Load training data
train_dataset = ml_data.load('hls_burn_scars', split='train')
val_dataset = ml_data.load('hls_burn_scars', split='val')

# Get samples
image, mask = train_dataset[0]
print(f"Image shape: {image.shape}")  # (6, 512, 512)
print(f"Mask shape: {mask.shape}")    # (512, 512)

# Batch loading
images, masks = train_dataset.get_batch([0, 1, 2, 3, 4])

Processing

  • All bands converted to surface reflectance
  • Normalized to 0-1 range
  • Compressed using Blosc/zstd (compression level 3)
  • Stored in Zarr v2 format for efficient access

Citation

If this dataset helped your research, please cite:

@software{HLS_Foundation_2023,
    author = {Phillips, Christopher and Roy, Sujit and Ankur, Kumar and Ramachandran, Rahul},
    doi    = {10.57967/hf/0956},
    month  = aug,
    title  = {{HLS Foundation Burnscars Dataset}},
    url    = {https://huggingface.co/datasets/nasa-impact/hls_burn_scars},
    year   = {2023}
}

License

This dataset is released under the Creative Commons Attribution 4.0 International (CC-BY-4.0) license.

Downloads last month
1