Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
episode_index: int64
tasks: list<item: string>
length: int64
vs
episode_index: int64
stats: struct<observation.state: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<max: list<item: list<item: list<item: double>>>, min: list<item: list<item: list<item: double>>>, mean: list<item: list<item: list<item: double>>>, std: list<item: list<item: list<item: double>>>, count: list<item: int64>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 559, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              episode_index: int64
              tasks: list<item: string>
              length: int64
              vs
              episode_index: int64
              stats: struct<observation.state: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<max: list<item: list<item: list<item: double>>>, min: list<item: list<item: list<item: double>>>, mean: list<item: list<item: list<item: double>>>, std: list<item: list<item: list<item: double>>>, count: list<item: int64>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

example_dataset

This dataset was generated using phosphobot.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot.

To get started in robotics, get your own phospho starter pack..

Downloads last month
8
researchase/example_dataset · Datasets at Hugging Face
Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
episode_index: int64
tasks: list<item: string>
length: int64
vs
episode_index: int64
stats: struct<observation.state: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<max: list<item: list<item: list<item: double>>>, min: list<item: list<item: list<item: double>>>, mean: list<item: list<item: list<item: double>>>, std: list<item: list<item: list<item: double>>>, count: list<item: int64>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 559, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              episode_index: int64
              tasks: list<item: string>
              length: int64
              vs
              episode_index: int64
              stats: struct<observation.state: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<max: list<item: double>, min: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<max: list<item: int64>, min: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.images.main: struct<max: list<item: list<item: list<item: double>>>, min: list<item: list<item: list<item: double>>>, mean: list<item: list<item: list<item: double>>>, std: list<item: list<item: list<item: double>>>, count: list<item: int64>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

example_dataset

This dataset was generated using phosphobot.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot.

To get started in robotics, get your own phospho starter pack..

Downloads last month
8