mom-multilingual-embed
Collection
long context models for domain level mom multilingual embeddings
•
3 items
•
Updated
This is a sentence-transformers model finetuned from llm-semantic-router/mmbert-embed-32k-2d-matryoshka. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is included in Item 8 of the document?',
'What is included in Item 8 of the document?\n\nAnswer: Financial Statements and Supplementary Data',
'What is the content of Item 8 in the document?\n\nAnswer: Item 8 of the document includes Financial Statements and Supplementary Data.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0078, 0.9297, 0.5508],
# [0.9297, 0.9922, 0.6680],
# [0.5508, 0.6680, 1.0000]], dtype=torch.bfloat16)
sentence_0, sentence_1, and sentence_2| sentence_0 | sentence_1 | sentence_2 | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| sentence_0 | sentence_1 | sentence_2 |
|---|---|---|
What led to the increase in operating income margin for the Dollar Tree segment in 2022? |
What led to the increase in operating income margin for the Dollar Tree segment in 2022? |
What was the increase in the gross profit margin for the fiscal year 2022 compared to the previous year? |
How much net cash was provided by operating activities in 2022? |
How much net cash was provided by operating activities in 2022? |
What were the main components contributing to the net cash provided by operating activities in 2023? |
How was the stock-based compensation expense of $254 million accounted for in the company's financial statements? |
How was the stock-based compensation expense of $254 million accounted for in the company's financial statements? |
How much did the cost of revenue increase in stock-based compensation expense from fiscal year 2021 to 2023? |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
num_train_epochs: 2multi_dataset_batch_sampler: round_robindo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8gradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: Nonewarmup_ratio: Nonewarmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Trueenable_jit_checkpoint: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseuse_cpu: Falseseed: 42data_seed: Nonebf16: Falsefp16: Falsebf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: -1ddp_backend: Nonedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonedisable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Nonegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Truepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_for_metrics: []eval_do_concat_batches: Trueauto_find_batch_size: Falsefull_determinism: Falseddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueuse_cache: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
jhu-clsp/mmBERT-base